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L INTRODUCTION

The Spallation Neutron Source (SNS) Linac to be built at Oak Ridge National Laboratory (ORNL) consists
of a combination of low energy normal conducting (NC) accelerating structures as well as higher energy
superconducting RF (SRF) structures. The RF Controls team at Los Alamos National Laboratory is
responsible for the RF Controls systems for both the NC and SRF portions of the linac. In order to
efficiently provide a working control system, the RF Controls team has performed a lot of modeling.

The purpose of modeling is to investigate the various cavity configurations in order to provide the correct
requirements for the control system hardware. We use modeling as a way to specify RF components;
verify system design and performance objectives; optimize control parameters; and to provide further
insight into the RF control system operation. At LANL this sort of modeling has been utilized and proven
on a number of pulsed and CW accelerators for at least the past ten years.

A main part of a linear accelerator RF system is the cascade of a nonlinear klystron and a linear cavity. In
order to investigate the system characteristics, a MATLAB/SIMULINK model has been constructed and an
enormous number of simulations have been performed. When the cascade of a klystron and a cavity is not
a single one, it is very difficult to study the performance of the total number of cascades through
simulation. In SNS, the linear accelerator section is composed of a normal conducting subsection and a
superconducting subsection. The normal conducting subsection is composed of 1 RFQ, 6 DTL tanks, 4
CCL modules; the superconducting section is composed 33 low beta SRF cavities, 48 high beta cavities.
The RFQ is driven by a 2.5 MW klystron, each DTL tank is driven by a 2.5 MW klystron, each CCL
module is driven by a 5.0 MW klystron, and each SRF cavity is driven by a 550 kW klystron. Hence, total
cascades of a klystron and a cavity are 92. Also, each cascade of a klystron and a cavity is controlled by a
low level RF controller and so, at an extreme, 92 different controllers are necessary. For syntheses of
controllers and analyses of closed loop systems and open loop systems, modern control theory that provides
the systematic tools for analysis and synthesis is applied. In order to apply the modern control theory, it is
inevitable to obtain a linearized klystron model for a nonlinear klystron at the specific operating point of
the klystron. Hence, the cascade of a klysron and a cavity is approximated by a linear system.

In the real world, uncertainties and disturbances are unavoidable. In a linear accelerator RF system, there
are several sources of the uncertainties and the disturbances. For a klystron, the major disturbance source is
the high voltage power supply (HVPS) ripple. This disturbance affects both the output amplitude and the
output phase of a klystron. A model for the ripple is necessary to investigate the klystron performance. For
a SRF cavity, the major disturbances on the cavity characteristics are the Lorentz Force Detuning and the
microphonics. Also, the changes of RF parameters should be investigated and be included in the model. In
the low level RF control system, many RF components are used and these components are not ideal and
have their own uncertainties and latencies. Also, feedback loop time delay, waveguide time delay, and
other time delays are modeled. All of these uncertainties, disturbances, and time delays, are modeled as
either multiplicative uncertainties, additive uncertainties, or exogenous disturbances.

Finally, for perturbed system models, low level RF controllers are synthesized by applying modern control
theory such as H, control, H control, loop shaping control, H  based PI control. Closed loop system

stability and performance are analyzed.

The structure of this paper is as follows: In the next section a nonlinear klystron is modeled. A
normalization process of the amplitude saturation curve and the phase saturation curve based on the
measured input power-output power data and input power-output phase data. A mathematical nonlinear
klystron model is obtained by approximating the amplitude saturation curve and the phase saturation curve
using least square sense polynomial curve fitting. Then, a linearized model of the klystron around an
operating point is obtained. The HVPS ripple effect is then modeled as both an output multiplicative
uncertainty and an exogenous disturbance. In section III, a SRF cavity and a normal conducting cavity are



modeled. Also, the perturbed model for a SRF cavity due to the variations of RF parameters is investigated.
In section IV, the feedback loop uncertainties and forward loop uncertainties are modeled as multiplicative
uncertainties. Also, time delays are lumped together and are modeled as a multiplicative uncertainty. In
section V, all perturbed models are integrated and a perturbed linear accelerator RF system is obtained.



II. KLYSTRON MODELS

In SNS, the normal conducting linac part consists of 1 RFQ, 6 DTL tanks, 4 CCL modules. The
superconducting linac part consists of 81 SRF cavities. Each tank, module, and SRF cavity produces a
different level of energy and transfers a different amount energy to the beam. For example, the following
table shows the required RF parameters in 6 DTL tanks.

Table 2.1 SNS DTL Tank Parameters

Tank| AW Pg s E,T U Qo Pc B Qexi QL U

MeV) | (MW) | (deg) | MV/m) (€))] MW) (deg)
1 5.023 0.171 -36 1.495 478 | 35,887 0.337 1.508 | 23,803 14,311 -8.4
2 15.315 0.521 =25 2.787 16.51 39,919 1.046 1.498 | 26,646 15,980 -5.3
3 16.951 0.576 =25 2.958 21.69 | 42,122 1.302 1.442 | 29,204 17,247 -4.8
4 16.790 0.571 =25 2.889 21.15 | 42,472 1.259 1.453 | 29,222 17,311 -4.9
5 15916 0.571 -25 2.789 21.36 | 42,526 1.270 | 1.450 | 29,338 17,361 -4.9
6 14.333 0.487 -35 2.761 2148 | 42,412 1.281 1.380 | 30,728 17,818 -6.4

Since each klystron supplies RF power to each DTL tank, the operating point of each klystron is different
from one klystron to another klystron. This requires the parameterization of the operating point of a
klystron with respect to the required power (sum of beam power, P,, and copper power loss, P.). A

klystron can be expressed as the cascade of a linear subsystem and a nonlinear output subsystem. The linear
subsystem represents the 3dB bandwidth of the klystron and the constant gain. The nonlinear output
subsystem represents the amplitude saturation curve and the phase saturation curve of the klystron. The
amplitude saturation curve and the phase saturation curve are represented by the table of measured input-
output data. Given measured data, the amplitude saturation curve and the phase saturation curve are
approximated to analytic, mathematical equations by curve fittings in the least square sense. Basis of the
curve fitting can be chosen from the function such as Bessel function, exponential, power series and the
choice is closely related to the simplicity of the modeling. Here, power series basis is chosen.

II-A. Amplitude Saturation Curve and Phase Saturation Curve Normalization

In the linac part of the SNS, 6 2.5 MW Kklystrons are used in DTL tanks, 4 5.0 MW klystrons are used in 4
CCL modules, and 81 550 kW klystrons are used for SRF cavities. For each klystron type, the
normalizations for the amplitude saturation curve and the phase saturation curve are needed for the
modeling of the klystron.

Table 2.2 VKP-8290A amplitude saturation data

Input Power (W) Output Power (MW) Gain (dB)

6.7000 0.1600 43.7805
11.4799 0.5933 47.1334
17.1789 1.0000 47.6500
22.8780 1.5467 48.2999
31.5186 2.0000 48.0246
34.2762 2.1333 47.9400
39.5753 2.3333 47.7049
45.6744 2.4733 47.3360
57.0726 2.6000 46.5855
67.0000 2.6050 45.8973
91.2671 2.6000 44.5466
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Figure 2.1 Amplitude Saturation Curve

To understand the normalizations, a 2.5 MW klystron, VKP-8290A is taken as an example. Table 3.1
shows the measured input power-output power relation of a VKP-8290A klystron and figure 2.1 shows its
amplitude saturation curve. At the input power 67 W, the output power reaches its saturation, 2.605 MW.
The amplitude saturation curve of the klystron can be normalized in such a way that the input power-output

power pair (P.", P4 )=(67 W, 2.605 MW) is mapped to (1,1) pair and other pairs (P, ,P, ) are

in °>%" out

P, P
P_ZL’POTZJ pairs. Also, from the rule, ¥ =,/2R, P, the normalized input voltage-output

in out

mapped to (

voltage mapping can be obtained. Here, R, is the transmission line characteristic impedance. These
mappings yield the normalization as given in table 2.3 and figures 2.2-2.3. In figure 2.2 and figure 2.3, two
points are line-interpolated, which may result in the inaccurate input-output relation. The normalized
amplitude saturation curves as shown in figures 2.2-2.3 make it easy to obtain the input-output relation for
the operation of the klystron at a specified power control margin.

Suppose the klystron is to be operated at x % power control margin. Then, the corresponding operating
output power and operating output voltage of the klystron in the normalized amplitude saturation curves are
given by

pror 10 @.1)
1.0+x/100

1.0
yyor _ [pror _ | 19 29
o o 1.0+x/100 @2)

In the unnormalized amplitude saturation curves, corresponding operating output power and voltage
corresponding to x % power control margin are



POP :PNOP .PS‘” _ 10 PSar (23)

out out out 1.0+x/100 : out

} 1.0 ——
VOP — VNOP _VSat — /2R PSat 24
out out out 10+X/100 o” out ( )

Vi = 2R, P’ . (2.5)

The corresponding operating input power and operating input voltage are determined in the normalized
amplitude saturation curves as shown in figure 2.2 and figure 2.3.

where

Normalized Input = Normalized Output

1.0
P = PN = ——— (2.6)
1.0+x/100

} 1.0
y Nor & yNoP = (2.7)
1.0+x/100

Also, the unnormalized operating input power and operating input voltage are given by
POP — PNOP .P.Sat (2 8)

yoP _ Vi:vop 'Vi,fl” 2.9)

in

where

Vil =2R, P . (2.10)

When the klystron is to be operated at the 25 % power control margin, then the input-output relations in the
normalized amplitude saturation curves are as follows. The operating output powers are

1.
P = 07257100 22 o5 =080 W, PO = pNOP . pS _(.80-2.605 = 2.084 MW.
U+

The corresponding operating output voltages are

Vo = ,/ﬁ =0.8944 V, yOor =y NP 2R PS* =0.8944-16.14 =14.436 kV.
O+

Also, the corresponding operating input power and operating input voltage are obtained from the amplitude
saturation curves of power and voltage even though it is difficult to obtain the exact values from the
amplitude saturation curves. The operating input powers are

P, =0.4963 W, P = P)O . PS5 =0.4963-67.0 =33.2521 W
and the operating input voltages are

VNP =0.7045 V, V.o =57.6646 V.

in



Table 2.3 VKP-8290A normalized amplitude saturation data

Normalized Normalized Normalized Normalized
Input (W) Output (W) Input (V) Output (V)
0.1000 0.0614 0.3162 0.2478
0.1713 0.2278 0.4139 0.4772
0.2564 0.3839 0.5064 0.6196
0.3415 0.5937 0.5843 0.7705
0.4704 0.7678 0.6859 0.8762
0.5116 0.8188 0.7153 0.9049
0.5907 0.8956 0.7686 0.9464
0.6817 0.9494 0.8257 0.9744
0.8518 0.9981 0.9229 0.9990
1.0000 1.0000 1.0000 1.0000
1.3622 0.9981 1.1671 0.9990

Z038 0N OC-EC~T0S O~

Normalized Input Power

Figure 2.2 Normalized Amplitude Saturation Curve in Input Power-Output Power
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Figure 2.3 Normalized Amplitude Saturation Curve in Input Voltage-Output Voltage

The relations (PSaI PSat ) , (V‘Sal VSat) , (1),‘:/0[) PN()P) , (V,',/,VOP , V NOP) , (POP P()P) , (V-OP VOP)

in > out in " out >~ out out in % out in " out

when the klystron is operated at the 25 % power control margin are summarized in figure 2.4.

The phase saturation curve can be also normalized. Table 2.4 and figure 2.5 show the phase saturation
curve data of the VKP-8290A klystron. At the input power 6.7 W, the phase shift is 44.3 degrees. A phase
offset of 44.3 degree is introduced so that the pair (6.7 W, 44.3 degrees) becomes (6.7 W, 0.0 degrees).

Other input power-phase shift pair (P;, @) is reduced to (P;, (Z ) where

b =¢—443

Then, the input power-offsetted phase pairs are normalized in such a way that (P, ¢ -44.3) pairs are

mapped to (P;,/67.0, ¢ -44.3) pairs. Also, from the rule, ¥, =,/2R, P, , the normalized input voltage-

n
offsetted phase shift mapping can be obtained. The normalized phase saturation curve data and the
corresponding curves are shown in table 2.5 and figures 2.6-2.7, respectively. As are the cases of the
amplitude saturation curves, two data points are line-interpolated. Figure 2.8 shows the schematic diagram
for the normalization of the amplitude saturation curve and the normalization of the phase saturation curve.
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Figure 2.4 Input-Output relations in the normalized amplitude saturation curve



Table 2.4 VKP-8290A phase saturation data

Input Power (W) Output Phase (Deg)
6.7000 44.3000
8.4348 43.9000

10.6188 43.6000
13.3683 43.6000
16.8296 43.5000
21.1873 43.3000
26.6732 43.0000
33.5795 41.7000
42.2741 40.5000
53.2200 40.0000
67.0000 39.2000

Saturatfon Point
Pin=67\fV

Figure 2.5 Phase Saturation Curve
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Table 2.5 VKP-8290A Normalized phase saturation data

Normalized Normalized Normalized Normalized
Input (W) Phase (Deg) Input (V) Phase (Deg)
0.1000 0.0000 0.3162 0.0000
0.1259 -0.4011 0.3548 -0.4011
0.1585 -0.6990 0.3981 -0.6990
0.1995 -0.6990 0.4467 -0.6990
0.2512 -0.8021 0.5012 -0.8021
0.3162 -1.0027 0.5623 -1.0027
0.3981 -1.3006 0.6310 -1.3006
0.5012 -2.6012 0.7079 -2.6012
0.6310 -3.7987 0.7943 -3.7987
0.7943 -4.2972 0.8913 -4.2972
1.0000 -5.0993 1.0000 -5.0993
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Figure 2.6 Normalized Phase Saturation Curve in Input Power-Output Phase
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II-B. Analytic Representation of Amplitude Saturation Curve and Phase Saturation Curve

In order to represent the amplitude saturation curve and the phase saturation curve accurately, it is
necessary to measure as many as possible input power-output power pairs, and input power-output phase
pairs. In general, this is impossible. Instead, it is useful to obtain analytic equations for the amplitude
saturation curve and the phase saturation curve based on the finite number of measured data. For this
purpose, least square sense curve fitting is of general use. For the basis of the curve fitting, Bessel
function, exponential function, power series and others are considered. The basis is chosen in such a way to
simplify the mathematical model of the klystron. In this note, power series are selected. In the basis of
power series, the normalized amplitude saturation curve and the normalized phase saturation curve are
expressed as

N .
vo=1,)=Y7c4 (2.11)
i=1

d.A (2.12)

M=

Vo =lp(4)=

i

NOP
V.

m >

and c;, cz., i=12,--,N are
characteristic coefficients of the amplitude saturation and the phase saturation curves of the klystron to be

where 4, 0.0<4<1.0, is the normalized input voltage,

obtained. Coefficients c,, d. , i=12,-- N are determined in a least square sense from the data in table

i

2.3 and table 2. Table 2.6 shows the coefficients c,, 67, , i=12,-- N and figure 2.8 and figure 2.9 show
the plots of the equations (2.11) and (2.12) with respect to the normalized input voltage A4 .

Similarly, the inverse of the amplitude saturation curve and the inverse of the phase saturation curve of the
klystron can be represented by power series of the output amplitude y , and the output phase y,

N .
L'v)=2ey, (2.13)
i=l1

1, (yP>=Zf,-y;; (2.14)

where e, f_;-, i=12,--, N are characteristic coefficients of the inverse of the amplitude saturation

curve and the inverse of the phase saturation curve of the klystron. Coefficients e,, f, , i=12,--,N are
determined in a least square sense from the data in tables 2.3 and 2.5. Table 2.7 shows the coefficients e,,

j_‘i, i=12,-,N and figure 2.10 and figure 2.11 show plots of the equations (2.13) and (2.14) with
respect to the output amplitude y , and the output phase y,, respectively.

As shown in figure 2.9, with a 5™ order power series, the phase saturation curve is not fitted well, even
though the amplitude saturation curve is properly fitted. Hence, the power series order is increased to 7.
Table 2.8 shows the coefficients of the power series of amplitude saturation curve and the phase saturation
curve and figures 2.12 and 2.13 show the plots of curve fitting. Table 2.9 shows the coefficients of the
power series of inverse amplitude saturation curve and the inverse phase saturation curve and figure 2.14
and figure 2.15 show the plots of curve fitting.
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II-C. STATE SPACE MODEL OF A KLYSTRON

As mentioned, a klystron can be expressed as the cascade of the linear subsystem and the nonlinear output
subsystem. The linear subsystem represents the 3dB bandwidth of the klystron and the constant gain. The
nonlinear output subsystem represents the amplitude saturation curve and the phase saturation curve of the
klystron.

II-C-1. Nonlinear Model

The klystron dynamics are mainly determined by the 3 dB bandwidth, f,,, of it and are simply
represented by

X, =—ax, +au, (2.15)
X, =—ax, +au, (2.16)

where u, and u, are low level RF In-phase (I) and Quadrature (Q) signals and a =27f ;.

It is assumed that the signal levels of the low level RF I and Q are nominally less than or equal to one. This
assumption is important for the analysis and synthesis of the control system. When the signal levels are
much higher than one, a scale matrix is introduced. There is a preamplifier in order to level up the low
level RF 1 and Q and there is a gain of the klystron at a specific operating point of the klystron. A
constant K, is defined as the lumped gain of the preamplifier gain and the klystron gain. As shown in

table 2.2, the klystron gain is different from one operating point to another operating point. Hence, the
input voltage V,, of the klystron is

in

V., ngqlxlz +x5 . (2.17)

The normalized input voltage ;' as mentioned in the previous section is

v K
V== =& [yl +x; . 2.18)

Va 2R, PS5

For notational convenience, let
A=V, (2.19)

Considering the analytic equations for the Amplitude saturation curve and the Phase saturation curve as
investigated in the previous section, the normalized output voltage, V"

out

and the normalized output phase,

0., of the klystron at baseband are modeled as
N .
Vouw =1, (A) =2 ¢, 4’ (2.20)
i=1
N
O =1p( D)+ =D d A +¢ 2.21)
1

i
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respectively, where ¢ is the filtered phase of the input signals (low level RF I and Q signals). That s,

¢ = tanl(x—zj ) (2.22)
x

1

The equations (2.15)-(2.16) and (2.20)-(2.21) define the nonlinear state space model of the normalized
klystron.

The output voltage as given in (2-20) is the normalized one, V" . Hence, the unnormalized output voltage
for driving the cavity is obtained from the equation (2.4).

Vout = Voi{;l 'Vo};/t = VZRapofz‘tn 'Va/::/t : (223)

Plugging (2.23) into (2.20), the unnormalized output voltage and the unnormalized output phase of the
klystron are obtained.

N
Vout = Ropoittlt : V()]uvt = VZRoPoiz;t 'IA (A) = VZR(;P(;Z;” ZEIAI (224)
i=l

0, =IP(A)+¢7=§07,-A" +4 . (2.25)

The output amplitude and the output phase as given in (2.24)-(2.25) can be expressed in the form of In-
phase (I) and Quadrature (Q),

N No__
[y = Vout Cos(gout) = V2R0P0i‘tz’ ZEzAl COS(Z diA[ + ¢)
i1 i1
N ‘ N o_ _ N o _
=\2R, P > ¢ A’ (cos(z d,A")cos(p)—sin(d d,A")sin(¢ )J (2.26)
i=1 i=1 i=1

N o N _ -
0, =V, sin(0,,)=y2R, Py -> ¢, A" sin(}.d, A" +¢)
i=1 i=l

= 2R, P ﬁ E,.A"[sin(ﬁ d, A )cos(p)+ cos(ﬁ d,A")sin(¢ )J . (2.27)

The equations (2-15)-(2.16) and (2-26)-(2.27) define the nonlinear state space model of the unnormalized
klystron.

II-C-2. Linear Parameter Varying Model

The nonlinear model of a klystron given by (2-15)-(2.16) and (2-26)-(2.27) depicts the nonlinear amplitude
saturation curve and the nonlinear phase saturation curve of a klystron. However, the nonlinearity hinders
the application of the modern linear control theory both for analysis and synthesis. As mentioned, the linear
accelerator in SNS requires 92 klystrons. Also, each klystron is operated at a different operating power due
to the different energy level to be developed at each portion of the linear accelerator. In order to achieve
efficient analyses and syntheses for these klystrons and further for the cascades of klystrons and cavities
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in the linear accelerator, a linear klystron model around each operating point is required where the
operating point is determined by the required power of a cavity.

(2.26) and (2.27) are compactly expressed as

v cos(ic?[Ai) —sin(f‘@Ai) —
{I'v } a4l §o o {@@} - (2.28)
9, =1 sind d,4")  cos(Y.d, 4"y |5n(&)
Define
PSat N _ .
K, (A)= P";; [Z c.A’ j (2.29)
K, (4)= iJiAH . (2.30)

i=1

Plugging (2.18) and (2.19) into (2.28) yields

(ﬁ—,ﬁ}q o S0} e
~ = N cos(K ,(A)4) —sin(K ,(4)A)] cos(p)
= 2R, P* (Z ] ’T pou v Lm (Kp(4)4)  cos(K ,(A4)A) }Lin(g)}

~ 2R0Pf‘j’ N cos(K ,(A)4) —sin(K,(A)A4)] 5] cos(p)
_Kg Z ]LmK (4)4) cos(K,,(A)A)}vxl T in)

ouz: . Y - i-1 COS(KP(A)A) _Sln(KP(A)A) 2 2 Cos(a)
“\ By (;}C’A ]Lin(Kp(A)A) cos(KAA)AJ“x‘ o Lm@

_ COS(KP(A)A) _Sin(KP(A)A) [ 2, 2 005(5)
_KgKA(A)Lin(KP(A)A) cos(KP(A)A)} i +x2{‘ 5 @30)

sin(¢)
Since
N cos(¢)
x, b singg) |

equation (2.31) is reduced to

I, cos(K ,(A)4) —sin(K ,(4)4)] x,
{QJ K4 ){ n(K ,(4)4) COS(KP(A)A)LJ' 232
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Since the gain K, is a function of the normalized input voltage A of the amplitude saturation and phase

saturation curves, the I-Q output equation (2.32) is a linear parameter varying equation. Thatis, if x,u,y,
A, B,, C,(A4) are defined by

w=[x, ], T v=lr, o]

A_—aO B_aO
oo —al’ 1o al

K,(A)A) —sin(K,(A4)4
Co(A) =K K ,(4) cos(K, ()4) =sin(K, (4)4)] (2.33)

sin(K ,(4)4)  cos(K ,(4)A4)

then the klystron model as given in (2.15)-(2.16) and (2.32) is given by
X=A,x+B,u (2.34)
y=C,(Ax. (2.35)

Note that from (2.18)-(2.19), 4 is expressed in terms of x,, x,. Hence, C,(4) can be expressed as the
x,, x, dependent matrix. However, the operating point of the klystron is determined based on the RF

power for the cavity rather than the input low level RF signals, which implies that it is more reasonable to
consider the signal A4 first and then to consider the signals x,, x,. As a consequence, as given in

(2.33), expressing the matrix C, in terms of A4 is much more consistent.

II-C-3. Linear Hybrid Model

The linear parameter varying klystron model as given in (2.34) and (2.35) can catch the transient behaviors
in the period of cavity filling and in the period of beam loading. In order for that to be possible, it is
necessary to continuously measure or estimate the trajectory of the point(V,,,,6,,), which is a difficult

out

task. Instead, the operating point A4, of A4 is considered and the model is written by

X=A,x+B,u (2.36)
y=C,(4,)x, (2.37)

where A, is obtained as follows.

d d
Let (Vout 2 anut

can be obtained from the operating condition of a given cavity. The desired operating output of the
normalized klystron is

) be the desired operating output of the unnormalized outputs (2.24) and (2.25). (V%,,0%.)

out >

Nd __ 1 d
Vout - Sat .Vout ’
V 2R0P out
Nd _ pd
Hout - Haut .

By the inverse of the amplitude saturation curve (2.13), the desired operating input voltage A4, for the
normalized amplitude saturation curve is obtained.
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A, =1,V = Z (VN (2.38)

out out

Also, the desired operating voltage of the low level RF signal is obtained from (2.18).

2 2 ZRORSM
Jriex =Ny (2.39)

K

g

From (2.21), the desired operating phase of the low level RF signal is obtained.

¢, =0 — Zd A, =6M —Zd [Ze - J . (2.40)

Hence, from the relations given in (2.18) and (2.22), the desired operating I and Q of the low level RF
system are

ZR()PI';ISM e
Xy = K—Ad cos(g,) (2.41)
g
2 .Sat _
X,, = —KO “— A, sin(¢,). (2.42)

g

II-C-4. Lyapunov Linearization Model

The Lyapunov linearization is the most popular modeling method for the nonlinear system where the input
variation, state variation, and the output variation are described as u; =u—u,, X3 =x—X;, Ys =V =Yy,

respectively, and the linear model is expressed as

Xg =A x5 +Bug
Vs =Cp(A4y)xs.

II-C-5. Comparison of Linear Models

The linear parameter varying model given by (2.34)-(2.35) depicts the nonlinearities of the klystron
dynamics very well, even though in order to obtain the amplitude A, the trajectory of (V,,,0,,) is

necessary, which results in complexity. It also covers the whole operating range of the klystron. The model
as given in (2.36)-(2.37) describes the klystron dynamics around the wider neighborhood of the operating
point A, than the Lyapunov linearization model of (2.26)-(2.27). The relations between the linear

parameter varying model (2.34)-(2.35) and the linear time invariant model (2.36)-(2.37) are shown in
figures 2.16-2.19. Figure 2.16 and figure 2.17 show the output responses of the nonlinear klystron model,
the linear parameter varying model (2.34)-(2.35), and the linear model (2.36)-(2.37). For the inputs u; and

u, that reflect the cavity filling time for the normal conducting cavity in SNS linear accelerator, different
transient dynamics are observed. The transient behavior of the linear model (2.36)-(2.37) is far different
from that of the nonlinear model. This is due to the output matrix C, which is obtained from the

linearization at the operating point A4,. However, as the input A to the amplitude saturation curve and the
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phase saturation curve approaches the operating point A,, the outputs of the linear model (2.36)- (2.37)

converge to the outputs of the nonlinear model. Similar phenomena are observed for the linear parameter
varying model (2.34)-(2.35) but in this case, the convergent region is wider than that of the linear model
(2.36)-(2.37). These phenomena explain the convergent region as shown in figure 2.18. In figure 2.18, the
convergent region for the Lyapunov linearization is illustrated for comparison.

Comparing with the linear model (2.36)-(2.37), in the Lyapunov linearization, instead of u, x, y inthe
model (2.36)-(2.37), u;, x5, ys are used for the model.

Figure 2.19 shows the signal relations at the subblocks of the klystron model which clarify the relations of
the two models (2-34)-(2.35) and (2.36)-(2.37).

In our modeling of the low level RF control system, the linear hybrid model is used for the controller
synthesis and closed loop system analysis. For the verification of synthesis and analysis, the nonlinear
model is implemented with MATLAB/SIMULINK blocks.

In SNS, the Linac part is composed of 1 RFQ, 6 DTL tanks, 4 CCL modules, and 81 SRF cavities. A 2.5
MW klystron supplies RF power to a DTL TANK, a 5.0 MW klystron supplies RF power to a CCL
module, and a 550 kW klystron supplies RF power to a SRF cavity. The energy to be developed at each
cavity is different from cavity to cavity, which implies that the operating point of each klystron is different
from klystron to klystron. Table 2.8 shows the power and voltage relations at 6 DTL tanks. Figure 2.20
shows the frequency responses of the 6 klystrons for 6 DTK tanks. The transfer matrices are obtained based
on the state space model (2.36)-(2.37). Figure 2.21 and figure 2.22 show the amplitude sturation curves for
the 6 klystrons. The amplitude saturation curves are unnormalized for the klystron saturation voltages,

sS4 s as given in the 9™ column of table 2.8. The operating output voltages are ¥.%”’s as given in the

out

6" column of table 2.8. Note that the normalized operating input voltages A4 4 s are the same value, which
implies that with the same input u , the gains, K, ’s, are determined so that

K, K., K6

Lr e rp ampy

Table 2.8 SNS DTL Tank RF Power Requirement (Transmission Line Characteristic Impedance is 50 Q)

Tank Ps Pc P Klystron Klystron Power Klystron Klystron
(MW) (MW) (MW) Operating Operating Control Saturation Saturation
Point Power |Point Voltage | Margin (%) Power Voltage
(MW) (kV) (MW) (kV)
1 0.171 0.337 0.508 0.508 7.1274 25 0.6350 7.9687
2 0.521 1.046 1.567 1.567 12.5180 25 1.9588 13.9955
3 0.576 1.302 1.878 1.878 13.7040 25 2.3475 15.3216
4 0.571 1.259 1.830 1.830 13.5277 25 2.2875 15.1245
5 0.571 1.270 1.841 1.841 13.5683 25 2.3013 15.1699
6 0.487 1.281 1.768 1.768 13.2966 25 2.2100 14.8661
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Yellow Region: Lyapunov Linearization
Green Region: Linear Hybrid Model
Blue Region: Linear Parameter Varying Model

Figure 2.18 Operating Point and Convergent Regions
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Figure 2.19 Block Diagram of a Klystron
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II-D. PERTURBATION MODEL OF A KLYSTRON

The major perturbation of a klystron’s output is due to the high voltage power supply (HVPS) ripple.
HVPS ripple changes both the amplitude and the phase of the klystron output, which results in perturbation
of both In-phase and Quadrature outputs of the klystron. A perturbed klystron due to HVPS ripple can be
represented by a nominal system with multiplicative uncertainty or additive uncertainty. Multiplicative
uncertainty and additive uncertainty are interchangable. Another way is to express a perturbed klystron as
a nominal system with exogenous disturbance. In the latter case, a proper transfer matrix from the HVPS
ripple to the klystron output should be obtained.

Let 4 be the normalized nominal input voltage of the amplitude saturation curve. Then the perturbed input
voltage due to the HVPS ripple is expressed as

A, =A(1+A R)"* (2.43)
where A , is the amplitude perturbation in percentage and R e R, |R| <1, is the normalized ripple signal.
Usually, the perturbation A , is small. Hence, (2.43) can be approximated by

~ A(1+1.25A ,R). (2.44)
Also,

(1+1.25A ,R) ~1+1.25-i-A ,R. (2.45)

Then, from (2.11), the perturbed normalized output voltage of the klystron is obtained.

N .
y{; :IA(AP):ZEI'AIP
i1

¢, (4(1+1.25A ,R)Y

.5'42

1]
Mz

¢, A" (1+1.25A ,R)’

Q

'Mz ﬁMz

EA (1+1.25-i-A ,R)

N
A" +1.25A Z ' (2.46)

In order to simplify the second term of (2.46), a constant k , of the following optimization problem is to be
obtained.
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min k
(2.47)
c, A -i—kZEiA’ <0

i=1

s.t.

-

1

The solution of the linear programming problem (2.47) always exists. If the solution of the linear

programming problem (2.47) is k > then (2.46) can be expressed as

N ~ N .
yip=>.6A +1.25k A RY G A" . (2.48)

i=1 i=1

Hence, the perturbed normalized output voltage of the klystron due to the HVPS ripple is written by

N A
Vip =2 A (1+1.25kAAAR). (2.49)
i=1

The effect of HVPS ripple on the output phase of the klystron is described by two terms. The first is the
perturbed output of the phase saturation curve given in (2.12) due to the perturbation of the perturbed
normalized input voltage A, ,

d, A,

M=

i

and the second is the direct additive phase perturbation
ALR.

Taking into consideration these two terms, the perturbed normalized output phase of the klystron is
expressed as

AL +AR+¢

(A(1+1.25A R)) +A,R+¢

.

=>d A" (1+125A ,R)' +A,R+¢

N _ ) N _ . —_
=Y d,A +1.25A RY . d, A" -i+A,R+¢ . (2.50)

i=1 i=1

In order to simplify (2.50), a constant k » of the solution of the following optimization problem is to be
obtained.
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min k
(2.51)

N _ N _
st Yd A i—kY.dA <0
i=1

i=1

By using the solution k p of the optimization problem (2.51), the perturbed normalized output phase of the
klystron due to the HVPS ripple can be expressed as

— . A N _ . —
d A" +125k,A RY d A" + AR+

i=1

N
Yap

J (1+1.25/€PAAR)+ AR+§ . (2.52)

T\MZ i Mz

Also, from (2.49) and (2.52), the perturbed unnormalized output voltage and the perturbed output phase of
the klystron can be obtained.

= 2R P ﬁ '(+1.251€AAAR) (2.53)

N _ X ~ —
=NdA (1+1.25kPAAR)+ AR+ . (2.54)
i=1

In the In-phase and Quadrature coordinates, the perturbed unnormalized output of the klystron is expressed
as

N R N __ . ~ —
I, =y,c0s(y,,)=+2R, P -ZEI.A’(1+1.25kAAAR)cos(Zd,.AI(1+1.25kPAAR)+APR+¢]
i=1

A~ N . N — . A p—
= 2R, PS" . (1 +1.25kAAAR)Z c, A’ (COS[Z dA’ (1 +1.25k,,AAR)+ APRJ cos(¢)
i=1 i=1
N _ n _
—sin(z d.A' (1 +1 .25kPAAR)+ APRJ sin(¢ )J
i=1

O.,p = yip Sin(y,p) =/2R, Py" - ZCA (1+1 25k ,A R)sm(Zd A (1+1 25k ,A R)+A R+¢j

i=1

= 2R, PS5 (1 +1.25k A, R] cA sin| Y d, A'(1+1.25k,A ,R )]+ AR |cos(¢)
>

i=1

+cos(i ( 1+1. 25k A R)+A Rj s1n(¢)J

The above equations are compactly expressed in matrix form as

{;P } 2R P (1+1.251€AAAR)§:EI.Ai

yP i=1
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M=

— . ~ N ~
COS( d,A’(1+1.25kPAAR)+ APRJ —Sin(ZdiA'(l+1.25kPAAR)+ APR) —
i=1 i=1 |:COS(¢):| (2.55)

. o A e A ¥
sin( d,A’(1+1.25kPAAR)+APRj Cos(zd,-Al(1+1~25kPAAR)+APR] sin(¢)
i=1 P

=4

Plugging (2.18) and (2.19) into (2.55) and using (2.29) and (2.30) yields

{[-" } = 2R, PS5 ~(1+l.251€AAAR)~(ﬁ:E,A“]A
i=1

o
[ cos|K , () A\l +1.25k,A R+ A, R —sin(KP(A)A(1+1.251€PAAR)+APR) cos(¢)
sin{K , (A) A1 +1.25k,A ,R)+ A R) cos\K , (4)All+1.25k,A R)+ A, R) | sin(¢)

= 2R, PS5 ~(1+1.2512AAAR)~(§;E,.A[1}%\/% +

[ cos\K , () Al +1.25k,A R+ AR —sin(KP(A)A(l+1.251€PAAR)+APR) cos(@)
sin(K , (4)A(1+1.25k,A R)]+A,R) cos\K,(4)All+1.25k,A ,R)+ A, R) | sin(¢)

=K, —M~(1+1.251€AAAR)~(§:E,.A”]
i=1

2R PSat

o”in

{cos((KP (A)A((l +1 .25/€PAAR}+ APR)) - sin(KP (A)A(l +1.251€PAAR)+ APR)} R {cos(a )}
K A ~ 1 2

sin(K , (A) Al +1.25k,A ,R)+ A, R) cos|K ,(4)All+1.25k,A R +APR) sin($)

Sat R N )
=K, 1}};;’ -(1+1.25kAAAR)-(ZE,.A"j
in i=1

| cos KP(A)A€1+1.251€PAAR}+APR} —sin(KP(A)A(l+1.251€PAAR)+APR)} W{COS(J)}

sin{K , (4) A\l +1.25k,A ,R)+ A, R) cos|K, (A)Al1+1.25k,A R +APR) sin(g)
(2.56)
Since
R Al
X3 sin(¢)
and since

cos|\K , (4)All +1.25k ,A R )]+ A, R —sin(K,,(A)A(1+1.2512,,AAR)+APR)

sin{K , (A) Al +1.25k,A ,R)+ A ,R)  cos|K, (A)Al1+1.25k,A ,R)+ AR

| cos\K , (A4)A4-1.25k,A R+A,R —sin(KP(A)A-1.251€PAAR+APR) cos(K ,(A)4) —sin(K ,(4)4)
sin(K , (4)4-1.25k,A , R+A,R) cos\K ,(4)A-1.25k,A R+ A,R) | sin(K,(4)4) cos(K,(4)4)

Equation (2.56) can be written as
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I (1 1257 A R COSK P (DA-125k, A R+4,R —sin(KP(A)A-l.ZSZcPAAR +A,,R)
sin{K , (4)A4-1.25k,A ,R+A,R) cos\K ,(4)A-1.25k,A ,R+A,R
cos(K ,(A4)4) —sin(K,(4)4)] x,
sin(K ,(4)4)  cos(K ,(4)4) '

y

KK, (A)[ (2.57)

Xy
As in the previous section, define x,u,y, 4,, B,, C,(4) by

x:[xl xz]Ts ”:[”1 ”z]r’ yz[ly Q,v]T

A, = —a 0 B - a 0

ke O —a ’ kT O a B
C.(NH=K K .(4 COS(KP(A)A) —sin(KP(A)A)
k( )— g A( )Sin(KP(A)A) COS(KP(A)A) >

and define the perturbation matrix C,(4,A ,,R) by

CA(A’AA’R):(1+1.25]€AAAR{COS((KP(A)A~1.25kPAAR+APR} —s1n(KP(A)A~1.25kPAAR+APR)}.

sin(K , (4)4-1.25k ,A ,R+A,R) cos\K ,(4)A-1.25k,A ,R+A R

(2.58)

Then the perturbed klystron model is defined by (2.15)-(2.16) and (2.58).
x=A,x+B,u (2.59)
y=Cy(AA ,R)C, (A)x. (2.60)

The effect of the HVPS on the output of the klystron is seen in two ways. The first is the amplitude
perturbation which is given by

(1+1.25%,4,R). (2.61)

The second is the phase perturbation K ,(A4)A4 1.25k »A R+ AR which is given by the perturbed rotation
matrix

{COS{KP (A)A-125k,A R+A,R) —sin(K,(4)4-125F,A R+ APR)} 26

sin(K ,(4)4-1.25k ,A ,R+A,R) cos\K ,(A)A-1.25k,A ,R+A,R

Now, the effect of HVPS on the klystron is to be described as the multiplicative uncertainty.

First, by Taylor series expansion, (2.62) is approximated as
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cos\K , (4)4-1.25k ,A ,R+A ,R —sin(K,,(A)A.1.251€PAAR+APR)
sin(K ,(4)4-1.25k ,A , R+A,R) cos\K ,(A)A-1.25k,A ,R+A,R

1—%(KP(A)A~1.25/€PAA +AP)2R2 —(KP(A)A'1~25]€PAA +AP)R
~ 1 . -
(KP(A)A'1~25kPAA+Ap)R 1—5 K,(A)A- 125k, A, +A, ) R

L 0} 0 —(KP(A)A-1.25/€PAA +AP) R
0 1 (KP(A)A~1.25kPAA+AP 0
1 A 2
——(KP(A)A~1.25kPAA +A,,) 0
+| 2 . A IR 263)
0 —E(KP(A)A-IQSkPAA +AP)

As a result, the perturbation matrix (2.58) is expressed as

1 0 A B . A
CA(A,AA,R)z|: :|+ 125kAAAA (KP(A)A l,\ZSkPAA—FAP)R
01 (KP(A)A'l'ZSkPAA +A, 1.25k A,

A 2 A A
—%(KP(A)A-I.ESkPAA +A,,) 1.25kAAA(KP(A)A-1.25kPAA +A,,) ]
+

1.251€AAA(KP(A)A-1.251€PAA +A,,) —%(KP(A)A-IQSIQPAA +AP)2

N ~0.625% A (K, (4)41.256,A, +A, | 0 e
0 —0.625% A, (K, (4) 412584, +,)
(2.64)

Hence, it is possible to describe the perturbed klystron model in the form of a multiplicative uncertain
system

Xx=A,x+Bu (2.65)
y=I+A4A ,,A,))C, (A)x (2.66)
where
AAA A= 1.25k A, —(KP(A)A-1.25/€,,AA+AP)R
e (KP(A)A-I.ZSIQPAAJrAP 1.25k A ,

—%(KP(A)A-I.ZSIQPAA +AP)2 1.251€AAA(KP(A)A-1.251€PAA +AP) 2
+ R
1.251€AAA(KP(A)A-1.251€PAA +AP) -%(KP(A)A-l.zsléPAA +AP)2

~0.625% A (K, (4) 412564, +, | 0
0 ~0.625k ,A (KP(A)A-l.zslépAA +A,

R*.
)2
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Equations (2.65) and (2.66) represent the linear parameter varying klystron model which needs estimation
or measurement of the normalized input voltage 4. Instead of A4, the operating input voltage A, which is

given by (2.38) is considered. Then, (2.65) and (2.66) are written by

X=A,x+B,u (2.67)
y=UI+AA4;,A L A)C(A)x . (2.68)

The perturbed klystron model as given in (2.67) and (2.68) describes the klystron behavior around the
wider neighborhood of the operating point 4, than that of the Lyapunov linearization.

The transfer matrix of the perturbed klystron due to the high voltage power supply ripple is expressed in the
form of a multiplicative uncertainty.

Gp(8)=(I+A(4,,A ,,4,))G(s) (2.69)
where

G(s)=C,(4,)(sI-A4,)" B, . (2.70)

It is also possible to express the transfer matrix of the perturbed klystron in the form of an additive
uncertainty.

Gp(S)=(I+A(4,,A,,A,))G(s)
=G(s)+A(4,,A ,,Ap)G(s) . (2.71)

The additive uncertainty system (2.71) can give the information of the effect of high voltage power supply
ripple on the output of klystron more directly. Figure 2.21 shows the multiplicative uncertainty
representation of the high voltage power supply ripple and figure 2.22 shows the additive uncertainty
representation of the high voltage power supply ripple.

In order to represent the perturbed system (2.69) or (2.71) in the standard form of an uncertainty,
A(4,A ,,Ap)1is to be described as

ACAA A ) =W (DA (A, A A ) (2.72)

ipple
where

||KR (A»AA,AP)"OO <1, Vo (2.73)

and the weighting function matrix W,, , (s) is determined so that it reflects all frequency components that

arein A(4,A,,Ap).

ipple

A way to obtain (2.72) is as follows.
1. For -1.0<R<1.0, obtain the frequency response G,(jw), Vo.

2. Obtain
lo(jo) = max|G™' (jo)(G, (j©) - G(jo)).
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3. Wiipe (8) 1s determined such that

W e (8) = {W 0 } (2.74)

O WRipple (S)

W Ripple (jo)zl,(jo), Vo.

>A(AaAAaAP)

U, Gs) 0 TP,

Figure 2.21 Multiplicative Uncertainty

R AAA L A)

—» G(S)

u G(s) OIS

Figure 2.22 Additive Uncertainty
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Figure 2.23 shows G,(jw) for the 3" Klystron for the 3 DTL tank when the ripple R has the value in
the range of —1.0 < R <1.0. The nominal klystron G(j®) is considered when R =0.0. Figure 2.24 shows
|G‘1 (jo)G, (jo)-G( jw)j , —1.0<SR<1.0. Based on the results in figure 2.24, the weighting function
matrix Wy,
reprsentation of the perturbed klystron model due to high voltage power supply ripple

(s) determined satisfying (2.74). Figure 2.25 shows the multiplicative uncertainty

Gp(S) = (I + Wi ($)G($)A L (4,4 4, 4,)G(5) (2.75)

ipple

and figure 2.26 shows the additive uncertainty reprsentation of the perturbed klystron model due to high
voltage power supply ripple

G, (S)=G(s)+W,
=G(s)+ W,

(AR (A4,A 1, A,)G(s)
(5)G()A L (4,A ,,A,) (2.76)

ipple

ipple

When the weighting function matrix W, . (s)is diagonal,

ipple

G, (S)=G(s)+G(s )Wy, . (A (A,A ,A,). (2.77)

ipple

Usually, the diagonal weighting function matrix is selected when the coupling terms among channels in the
system are small. Figure 2.26 shows the additive uncertainty configuration of the perturbed klystron

model. The signal level of d R 1S “c? R “2 <land d, r contains the frequency components of the ripple. Since
the perturbed klystron model in the additive uncertainty configuration gives the effect of the high voltage
power supply ripple on the output of the klystron, it is to be used in the analysis of the low level RF system

and the synthesis of a controller such as a PI feedback controller and feedforward controller of iterative
learning control.
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Figure 2.23 G,(jw), -1.0<R<1.0
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Figure 2.24 |G'1 (jo)G, (jo)-G( ja)))| , —1.0<R<1.0
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Figure 2.25 Standard Setup for Multiplicative Uncertainty
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Figure 2.26 Standard Setup for Additive Uncertainty
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1. CAVITY MODELS

III-A. SRF CAVITY MODEL

The modeling of SRF cavity is based on the assumption that the RF generator and the cavity are connected
by a transformer. The equivalent circuit of the cavity is transformed to the equivalent circuit of RF
generator with a transmission line (wave guide) and the model is obtained [4, 15].

The SRF cavity can be represented by the state space equation (controllable canonical form [6]).

0 1 0 0
o -, +—c,a,,) —-(b,+—c,) Lc a Lc "
)'CZ _ 2 ) 1%1c 1 Ro 1 Ro 3% 1s Ro 3 xz
X3 10 0 1 X3
Xy T Gy _R_Ca —(b, + ¢a,,) by +—=c)) Xy
0 0
2 0 0 0
R 14 -2 0 (7
| R 7% ! (3.1)
0 0 |Vu||l 0 0|1,
2
0 — 0 -2
R, ¢
xl
V, _| % G TG TG X (3.2)
Vo C3dy, €3 Gay, S X
Xy
where
Aw, +A
a, =2~ 82220 L0 (0, + 80,
T 20, T
2 1 R R
b ==, b2:—2+(Aa)m+Aa)L)2, o =—"%, C3=—=
T T T 2QOT
20, : -
T= : Unloaded cavity damping time constant[s]

a)o
Q, : Cavity resonator unloaded quality factor
w,, :Cavity resonance frequency[rad/s]
R, : Resistance of the equivalent circuit of cavity transformed

to RF generator
R, : Transmission Line characteristic impedance

Aw,, : Detuning frequency[rad/s]
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Aw, : Lorentz Force Detuning
Vi,V forward 1/Q voltage

I1,,1,: Beam current in I/Q

V;,V,: Cavity Field in I/Q

¢ : Transformation ratio.

X b
In the state equation (3.1), the subsystems representing the input-states, Vﬂ - { ! }, Vf —{ 3 }, are the
X, X4

controllable canonical forms, which reveal the dynamics of the In-Phase (I) and Quadrature (Q) channels,

b X
respectively, and the subsystems representing the input-states, VfQ —[ 1}, Vf —{ 3} represent the
X, Xy
cross-coupling between the In-Phase (I) and Quadrature (Q) channels. The Lorentz Force Detuning
dynamics is represented by a state equation given below.

Ao, - Ao, - 2ZKE? (3.3)

acc
Tm Tm

E . the actual electric field intensity of the cavity [MV/m]

7, : the mechanical time constant of the cavity [s]

K : the Lorentz Force Detuning constant [ (Hz /(MV / m)*) ].

In order to incorporate the cavity field dynamics given by (3.1) and (3.2) to the Lorentz Froce Detuning
dynamics, it is necessary to replace E . in (3.3) with

c

E, [MV/m]

acc [

VealV']

gap

2 2
NV Vo lV]
where ¥V, [V] is the cavity gap voltage. Hence, we can write the Lorentz Force Detuning dynamics as

1 2 EM[MV/m] ’ 5 )
® K{CV—[V]} rr+V5).

gap

Define

E,[MV | m] ’
V. V] '

gap

K= 1{4
Then, the Lorentz Force Detuning dynamics is described by

, 1 M=, 2r—
Ao, =-—ho, -ZKV: LKV (3.4)
T T T

m m m
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The open loop system as given in (3.1) and (3.2) is time varying (parameter varying) since Lorentz Force
Detuning Aw, is varying. The system is written in the formal way of a linear time varying (parameter

varying) state space equation.

x=AAw,)x+B(Aw, )u+B,(Aw, )] (3.5
y=CAw,)x (3.6)
i 0 1 0 0
1 1 1
—(b, +—ca,,.) (b, + c) —c,a,, —c;
A(AC{) )_ o Ro Ra Ro
L2 0 0 0 1
1 1
_R_Csals - C3 -(by+—-ca,) —(b+—c)
[0 0 0 0
2
B(A _| R B, (A 260
( a)L)_ O 0 > 1( wL)_ 0 O >
0o = 0 -2
L RU ;
Cro,) = Ga,, ¢ —CGay 03}
C3dy, G5 Gy, ¢
=y x, ox ox] u=lv, vol. =, 1,], =l vl

Note that C(Aw,) and B(Aw,) are constant matrices and only A(Aw,) is the time varying (parameter
varying).

It can be easily verified that the system as given in (3.5) and (3.6) is controllable but not observable for any
Aw, . The observability matrix of the system is given by

C(Aw,)
0| Clo)Abo,)

C(Aw, A" (Aw))

whose rank is 2 for any A®; . Also, the rows of the output matrix C(Aw; ) are linearly independent for
any A@, . Hence, a nonsingular transformation matrix, P, can be defined where the first two rows of P
are the two rows of the output matrix C(A®,) and the other two rows, v,, Vv,, are entirely arbitrary so

long as P is nonsingular.

zZ, X,
CAw,)

z z X

zZ= zZ- X

0 ol v, 3

Z52 Xy
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Using the matrix P, the system given by (3.5) and (3.6) is transformed to the equivalent system in z-

coordinates.
Z A (Aw 0 B B
_Z=Z(_L)_ Tl T | (3.8)
Z5 4, Az | z5 B; B,
z
y=[c. 0{ } (3.9)
Zy
where
1
e -(Aw,, +Aw))
4.(80,) = CAw ) A(ho, )C* (8o,)=| I
(Ao, +Aw,) -—
7L
2 2
PR
B. =C(Aw,)B(Aw,) = 2" 2" s
-6 0
RO RU
-2c 2c
B, =C(Aa)L)B,(Aa)L)={ i 34},
-2¢,6 —2¢/¢
1 0
C, = ,
0 1
and
20, . .
T, = : Loaded cavity damping constant,
wo
o,
= :Loaded O,
0, y 0

P
p=1+ -+ Cavity coupling factor,

and C" (Aw, ) is the Moore-Penrose Pseudo-inverse[5] of C(A®, ).
In the system (3.8) and (3.9), the state z, does not appear directly in the output y or indirectly through z.

Hence, the state z is not observable and is dropped in the reduced system given by

z=A,(Aw;)z+B.u+B_,1 (3.10)
y=C,z. (3.11)

It can be easily verified that the reduced system (3.10) and (3.11) is also controllable and its input-output
relation is given by

Y(s)=C,(s] — A (Aw,))  B.U(s) + C_(sI — 4.(Aw,)) " I(s) (3.12)

where U(s), Y(s), and I(s) are Laplace transforms of u(¢), y(¢), and I(¢), respectively. It can be
easily verified that the input-output relation of the system given by (3.5) and (3.6) is the same as the
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equation (3.12). Since the reduced system (3.10) and (3.11) is both controllable and observable, it is
irreducible, which means physically that the dimension of the reduced system is the minimal number of
integrators or the minimal number of energy-storage elements required to generate the given transfer
matrix. Figure 3.1 shows the frequency response of the system (3.10) and (3.11). Meanwhile, the Lorentz
Force Detuning (3.4) is written as

: 1 M=, 21—
Aw, =——~Ao, —-L K2 - K22 (3.13)
T T T

m m m

The system representation in frequency domain as given in (3.12) can be expressed

Y(s)=G.(s)U(s)+Gy(s)I(s) (3.14)
where

Gc(s):Cz(sI—Az(Aa)L))’lBZ, (3.15)

Gy(s) = C.(sI - A.(hw,)) ' B., . (3.16)

The equation (3.14) shows that from the perspective of a cavity, beam current is an exogenous disturbance.
Also, the coefficients of the transfer matrix are dependent upon the Lorentz Force Detuning Aw, .

! o Giy(s)

e > Gc(S) + . y

Figure 3.1 Cavity Model. Beam current / is an exogenous disturbance

Table 3.1 shows the SRF parameters for cavity #70. Based on these parameters, the SRF cavity is modeled
in the form of state space model or transfer matrix. In SNS, there are 81 SRF cavities. In order to model 81
SRF cavities, parameters as shown in table 3.1 are calculated for each SRF cavity. Then, the mathematical
model is obtained. Figure 3.2 shows the frequency responses of G (s)’s of 81 SRF cavities and figure

3.3 shows the frequency responses of G, (s)’s when the Lorentz Force Detuning Aw, is assumed zero.
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Table 3.1 SRF cavity #70 parameters, power control margin = 0.33 (33%, assumed)

By, Beam Power 367 kW
by s Synchronous phase -19.5°
E,..»  Electric Field 15.8443 MV/m
K, Lorentz Force Detuning constant 2.0 (Hz/(MV/m)’
2
P . E yoe [MV I m] -1.3679e-005
Veap!V']
Tos Mechanical time constant 1.0 msec
0, Unloaded quality factor 3.0e + 009
Ip, Avrage beam current 26 mA
fos Resonance frequency 805 MHz
o, , Cavity resonance frequency 5.0580e+009 rad/sec
P Cavity wall dissipation 51.2780 W
Peak . 488.18 kW
P = (Pb +P )-(1+Power Control Margin), Generator peak power
g cu
R,, Transmission line impedance 50 @
P, 14.974 MV
Voap =~ > Peak cavity voltage
I}, cos(gy)
L., »  Cavity Length 0.9451m
Yy :Vgap cos(4 ), Beam Voltage 14.1154 MV
Pr =Py + Py, Forward Power 367.0513 kW
V. =|2R, Pr Forward Voltage 6058.5 7
v 121.1695 4
I ;= ——, Forward Current
RO
Veap o i .
Aw,, = Ay - — sin(—4) , Detuning frequency -1281.9 rad/sec
2P, Q, 180
1 207 -Aw .
Wy, = —tan (Tm) , Detuning angle 19.4840°
B . .
B =1+—— Cavity coupling factor 7160
cu
0 .
0r = , Loaded quality factor 6.98e+005
1+ 4
20, . o
T = , Cavity (unloaded) damping time constant 1.1862 sec
[0
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20 .
=L Loaded time constant

0.2760 msec

TL = 5
a)O
2 4.3728e+012 @
V&W .
Ry, =——, Shunt impedance
PCM
Ry, 2.1864e+012 0
R. =—=, Cavity resistance
2
R 2471.6
¢=|—%, Transformer ratio
PR,
3.5790e+005 @
R, :—; ,  Cavity resistance transformed to the equivalent circuit of RF
¢
generator

Vii =1p - Rgpy - cos(y) /(1 + ﬁ), Beam induced Voltage

2.8223e+007 V'

Py = Py, Generator Power for Matched Cavity

367.0513 kW

Vi =2\Pg B+ Rgjy cos(y) /(1 + ﬁ), Generator induced Voltage

1.9957e+007 V

Generator Current

Lgen = 24Py - B/ Ry,

0.0490 4

cu
g ="

3.0172e+005

cu
c3 =——
20,7

5.0287e-005
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III-B. PERTURBED SRF CAVITY MODEL

The dominant perturbation among the SRF cavity parameters is the external Q, O The loaded Q, Q, ,

ext *

is given by
1 1 1
—_— =t
QL Qo Qext
Since O, >> Q,,, in SRF cavity,
QL ~ Qext .
The relation between the load Q, O, and the coupling factor § ( f>>1) is given by
QO QO
QL = ~ .
1+ B

Hence, the perturbation of the external Q, Q.. is equivalently described by the inverse of the perturbation

ext

of the coupling factor S .

Let S, represent the nominal value of the coupling factor. Then a multiplicative perturbation of £ is
expressed as

B=pB,1+64) (3.17)

where |5 ﬁ| <1.0 represents the degree of the perturbation. For example, if £ is perturbed +10.0% from
its nominal value f,, then 6, =+0.1 and f=/,(1+0.1)=1.15,.

We need to investigate the effect of perturbation of £ on the system matrices as given in (3.10)-(3.11)

and the perturbed system. The system matrices are givenby 7,, ¢, ¢;, Aw,,, and § . We ignore the

m>o

effect of perturbation of S on the Lorentz Force Detuning Aw;, .
First note that

1 0, w, o,
o 20, 20 )0+p 20,077 19

Since for a SRF cavity # >>1, (3.16) can be written as

1 0]
— 2 f. 3.19
T, 20, p ( )
R 2
Also, since ¢ = — 7= A , and O, =(1+ A0, ,
ﬂR() Wo

_&_ Rc/gz _ IBRO
T 20,0, 20/,

, (3.20)
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R 1 AR,

¢y =—>—= ¢ = . 3.21
Y200 20, 40} )w, o2y
P -DP
Since B, =V,,, -1,-cos(¢,), P,=(B-1P,, andso V,, = b _(p-DF, ,
Ib : COS(¢A) Ib : COS(¢_§)
Ve ® 1 o
Ao, =22 .1 -2 .sin(d)=—(Bf—-1)-—>-t ) 3.22
n=3p . (4,) Z(ﬁ ) 0 an(g, ) (3.22)
Since S >>1, we can write (3.22) as
1 0]
Ao, ~—f-—-tan . 3.23
m Zﬁ’ Q. (4,) (3.23)
Since V,, A
“r [b'COS(¢S)
2 Vi _ (B-DR,
"R, I cosi(g)]
:&_ (ﬂ_1)2Peu (3 24)

2 212 -cos*(4,)

Hence,

- [® :J (B-1’P, :\/ Py |B-D (3.25)
PRo \2BRo1} -cos’(8,)  \2Ro1; -cos’@) '

and for g >>1,

2R01b2 -cos? (¢,) '

é’z\/L JB . (3.26)

1 . 1 .
Let —, ¢, €3, Aw,,,and £, be the nominal values of —, ¢, ¢;, Aw,,, and ¢ corresponding to

710 7L
the nominal value g, of S given by
1 , ﬂoRO ﬂoRO
—— R P> Co=7~ 7 > Co =757 >
z-LO 2Qo 2Q0 /a)o 4QU /a)u
Ao~ B Lo tan(s) fon|—fu g (3.27)
"2t V2RI s (9) T |
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Then, for the perturbed value f = f,(1+6,) of S with |5ﬁ | <1.0,

LzL(“_é‘ﬁ), (3.28)
Tt Tro

¢ =¢, (1+6,), (3.29)
ey =cy(1+6,) (3.30)
Ame ~ Aa)m() (1 + 5ﬁ) > (331)

Crloyfl+d, . (3.32)

By using the perturbed parameters as given in (3.28)-(3.32), we can express the perturbed system matrices
of the cavity model as

- - Aa)mO

10 0 -Aw,

A (Aw,,8,) = A CEAER o |- (3.33)

Aa)mO - wL

Tro

2., _2,

7 C10 7
B.(6,)=|"Y 5’ (1+6,) (3.34)

Zcm cho

=2¢,080  2¢36, 3/2 —2¢0y 2056, 3
B,(5,)= 10 }(Hé )2 s (1+=6,), (3.35)
s [_203040 —2¢,,¢, ! —2c58, —2¢,06, 277

c |10 (3.36)
o 1] '

In (3.33), the Lorentz Force Detuning A, is treated as the system matrix perturbation. The same effect is
contributed by the microphonics, Aw,,,. In this case, (3.33) is given by

1
-— —Aw,,
" 0 -(Aw, +Aw
A.(Aw,, Ao, 8,)=| " L)+ (Ao, wer) (3.37)
Aoy, - (Aw, +Aw,0p) 0
Tro
Consider a system

z=A. (A, ,A®y0p,05)z2+B_ (6 )u (3.38)
y=C,z. (3.39)

This system is the nominal one with respect to the beam current 7 .
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Assume that the minimum value and the maximum value of the Lorentz Force Detuning A, are given

by Aw, and Aw., respectively, and the minimum value and the maximum value of the microphonic

Aw,, are given by Aw,,, and A wcr, respectively.  The Lorentz Force Detuning A , and of the

microphonic Aw,,., are scaled such that

Aw, =Aw,, +Ao A,

A yep = AO ycp, + DD yep, A ycp

820, <1

el <1

where Aw,,and Aw,p,, are nominal values and Aw, and Aw,,, are scaling factors and

Aw,, :%(AQL +A5L)

1 —
A®ycp, = E(AQMCP +AwMCP)

Aw,, =%(A5L —AQL)

A®,ycp, = %(AEMCP —A® cp )

Then, A4,(Aw,,Aw

mep 2

6y) and B_(5,) are decomposed as

-Aw,,

] [
A.(Mw,, A, 8,)=| T
Aw,, _Z Aw,,
+A®ycp, |:0 _1i|+AMCP|: 0
1 0 A® p,
1

Tro
— A cp
0

|

- - (Aa)mo + Aa)Ln + Aa)MCPn )

0
T
+5ﬂ r 1 +ALFD |:Aa)
Aw,, _2'_ Ls
L0
2 2 2 2

Z_Clo _Z_Cso Z_CIO _Z_Cso
BZ(5ﬁ): 20 20 +5ﬁ 20 20

Z_Dcso Z_oclo Z_Dcso Z_oclo
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1

Tro

-Aw,,
0

:|+AMCP|:ACO

A 0 -1 A 0
1 LAY 10 +Am Ao,

0

MCPs

—A® ycp

0

(3.40)
(3.41)
(3.42)

(3.43)

(3.44)
(3.45)
(3.46)

(3.47)

-Aw,,
0

|



Let

o, = 55 R
52 =D
53 = AMCP >
and
i 1
- _(Awmo +Aw,, +Aa)MCPn)
4 = Tro
z0 T
(Awmo + Aa)Ln + Aa)MCPn)
[
- _Aa)mo
T
Azl = ro 1 H
Ao, ———
L Tro
0 —Aw
Azz _ Ls ,
Aw,, 0
0 -Aw
A, = [A OMCPY:| )
D yicps
2 2
Z_oclo _Z_ocm
Bo=| 5 2 ’
_Z_OC30 Z_Oclo
2 2
Z_ch _Z_Ocso
le = 2 2 >
—c c
_Zo 30 ) 10
BZZ = Bzc = 0
Then,
3
AZ(AWL,Aa)me,é'p,) =4, +251A
i=1
3
Bz(aﬂ) =B, +z§iBzi .
i=1
Since

r,=rank[4, B,]=2, i=123,

i
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(3.48)
(3.49)
(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)



thereexist £,, G,,and H_ , i=12,3 such that

zi? zi 2

[Azi Bzi ] = Ezi [sz Hzi ] H i= 17293
where
Ezi € mzxz > [Gzi I_Izi]e m2><4 .

Now, define a linear system G, with extra inputs and outputs via the state equations

AzO BzO Ezl EzZ Ez3 z
y c, 0 0 o0 0 || u
v|=|G, H, 0 0 0w, (3.60)
v, G, H, 0 0 0 | w,
R _G s, H,y; O 0 0 s
or equivalently via the transfer matrix
|:J/}:G |:u:|:|:GSRF11 Gsrria }|:”:| (3.61)
v T w Garrr Gsprm | W
where
V—[Vl Vy Vs]T9
T
w= [Wl W, W}] >
G _ GSRF 11 GSRF 12
SRF = (3.62)
GSRF 21 GSRF 22
Gpeny € C* :up Y,
Ggrrry € C¥: web Y,
Gapry €C™ 1 urs v,
Gopry €CTC twis v

as shown in figure 3.4.

The perturbed system (3.38) and (3.39) is represented via a lower linear fractional transformation (LFT)

around G, namely,

V=F (Ggps AgpeJuts

(3.63)

where F, (Ggr,Agr) is alower linear fractional transformation (LFT)

-1
F (Gspr s Aspp ) = Gsprry + Gsprin A spr (1 —GarrnAspr ) Gsrral

and Ag, maps vi—> w and has the structure given as
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A gy ={diagls 1,,6,1,,6,1,]: 5, e R}. (3.65)

Y u
] «—
v, ¢ wy
| Gsp o
\4 Wy
} 5112
—P 6,1,
e 051,

Asrr

Figure 3.4 Lower LFT of the perturbed SRF cavity model

Since (3.60) is equvalently expressed as

|:V:| _ |:GSRF22 G spran }|:W:| ’ (3.66)
y Garriz Gsgen JL U
the perturbed system (3.36) and (3.37) is represented via an upper linear fractional transformation (LFT)

around G, , namely,

y=F, (ESRF’ASRF Ju (3.67)
where
ESRF _ |:GSRF22 Gspra } (3.68)
Grrr Gopen

and Fj, ((_?SRF ,Agr)is anupper linear fractional transformation (LFT)
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= -1
Fy (GSRF > ASRF) = GSRFIZASRF ([ - GSRF22ASRF) GSRFZI + GSRFll . (3.69)

Figure 3.5 shows the upper LFT of the perturbed SRF cavity model.

5112
— 5,1,
> 8.1,

Asrr

Vy 4 w,

Vs 4 w,

14 GSRF <_W7;_

y u
-« D —

Figure 3.5 Lower LFT of the perturbed SRF cavity model

III-C. NORMAL CONDUCTING CAVITY MODEL

The normal conducting cavity is similarly modeled as is the SRF cavity. The difference is that for normal
conducting cavity, the Lorentz Force Detuning and the microphonics do not apply. The normal conducting
cavity can be expressed as the state space model given by

z=Az+Bu+B_,I (3.70)
y=Cz (3.71)
where
==, v,J, u=, Vol r=[r, 1,J,
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A, = ,
Aw, - L
Ty
2. 2
R RO ~2e¢  2e¢
Bz = 20 2 ? H Bz] = H
¢ -26¢ -2¢4
RO RO
10
C= ,
0 1
and
20, . L
7 =—=: Cavity damping time constant [sec],

14

0, : Cavity resonator unloaded quality factor,
o, : Cavity resonance frequency [rad/sec],
R_, : Resistance of the Equivalent circuit of cavity transformed to RF

generator,
R, : Transmission Line characteristic impedance,

Aw,,: Detuning frequency [rad/s],
ViV forward I/Q voltage,
I,,1,: Beam current in I/Q,
V,,V,: Cavity Field in I/Q,

¢ : Transformation ratio,

2 . .
T, = 20, : Loaded cavity damping constant,
a)()
0
=—2_:Loaded O,
Q=17 7 0
B, . .
f =1+—=": Cavity coupling factor,
cu RCM
¢ =—, ¢, = .
! T ’ 20,7

The state space model as given in (3.70) and (3.71) can be expressed as the transfer matrix.

Y()=G (HU(s)+ Gy (s)I(s)
where

G.(s)=C.(sI-4.)"'B.,
G,(5)=C.(sI-A.)"'B,,.

(3.72)

(3.73)
(3.74)

The equation (3.72) shows that from the perspective of a cavity beam current is an exogenous disturbance.
Figure 3.6 and figure 3.7 show the frequency responses of 6 DTL tanks and the beam dynamics inside

DTL tanks.
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Table 3.2 DTL Tank #4 parameters, Power control margin =25%

Py, Beam Power 0.576 MW
P s Synchronous phase -25°
E e Electric Field 2.958 MV/m
0,, Unloaded quality factor 42122
Ip, Avrage beam current 34 mA
fos Resonance frequency 402.5 MHz
®,, Cavity resonance frequency 2.529¢+009 rad/sec
P, s Cavity wall dissipation 1.302 MW
P: eak _ (P, +P_):(I+ power _control _margin), Generator peak power 23475 MW
R, , Transmission line impedance 50 @
P, 18.703 MV
Veap = > Peak cavity voltage
Iy, cos(gg )
1% 6.323 m
Legy = Egap ,  Cavity Length
acc
Vb:Vgap cos(4) , Beam Voltage 16.951 MV
Pr =Py + Py, Forward Power 1.878 MW
Vi= 2R, Pr Forward Voltage 13704 V
vy 274.08 4
Ip=—", Forward Current
RO
Vaap Do 4 .
Aw,, = dp - —sin(—4), Detuning frequency -6196.4 rad/sec
2P, Q, 180
~ 1 201 -Aay, .
Wy, =—tan (T) S Detuning angle 4.8307°
P, 1.4424
B =1+——, Cavity coupling factor
cu
95 .
0; = , Loaded quality factor 17246
1+ p
20, . o
r=——, Cavity (unloaded) damping time constant 33.311 usec
a)O
20, .
r; =——, Loaded time constant 13.639 p sec
a)O
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2.6868e+008 @

2
V
Ry :ﬂ, Shunt impedance
PCM
Ry, 1.3434¢+008 0
R. =—=—, Cavity resistance
2
R 1364.8
¢ =|—%, Transformer ratio
PR,
72.120
R, :—; , Cavity resistance transformed to the equivalent circuit of RF
¢

generator

Vii =1p - Rgpy - cos(y) /(1 + ﬁ), Beam induced Voltage

3.3898e+006 V

Py = Pp, Generator Power

1.878 MW

Vai =2y Pg - B+ Ry cos(y) /(1 + ,8), Generator induced Voltage

2.0022¢+007 V

Tgen = 2m ) Generator Current 0.20082 4

R 2.165e+006
¢l = Zeu

T

25.699

R
63 — CU

20,7
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Magnitude/Phase Response of DTL Tanks
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Figure 3.6 Frequency Responses of 6 DTL Tanks, |GC ( ja))| and ZG.(jo)
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Magnitude/Phase Response of BEAM Dynamics
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Figure 3.7 Frequency Responses of Beam Dynamics for 6 DTL Tanks,
|G, (jw)| and £G,(jw)
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III-D. SCALING

In the transfer matrix, the input u and the exogenous disturbance / have different signal levels. The
signal level of u is determined by the necessary power of a cavity. The disturbance / has an average of
26 mA and the peak value is 38 mA for SNS. In the case of DTL tanks, the range of input is 7127.4
V<u<13296.6 V (Table 2.8). Hence, in order to apply the modern system analysis tool such as

w1 —analysis , the disturbance [ is to be scaled.
First, it is easily verified that
B, =—¢R,B. =-B.cR,. (3.50)
Hence, the transfer matrix is reduced to
Y(5) =G, (s)(U(s)~¢R,1(5)). (3.51)

With the average beam current 26 mA, the scaling factor d, has the range

26673 | 95540-006 <d, <2273 _3.6479¢-006 (3.52)
13296.6 71274

Now, the new variable I has the same signal level as the input . Figure 3.7 is the scaled cavity model.

T Gu(s)

u . Ge(s) N AN

Figure 3.7 Scaled Cavity Model. Beam current / scaled and the new variable I is the
signal of the same level as the input u
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IV. CABLE DELAY, COMPONENTS UNCERTAINTY

The analog signals in the cavity are fedback to the digital signal processor for several purposes such as low
level RF control signal generation, data display, and data storage. That feedback loop is comprised of RF
components such as the RF switch, directional coupler, mixer, I/Q demodulator, preamplifier, bandpass
filter, and transformer. Since these components are not perfect, there are amplitude distortions and phase
distortions. These distortion are characterized in the frequency domain. Also, there is time delay due to the
feedback cable delay and RF components time delay, where significant time delays are yielded from the
feedback cable and the FIR filters.

Meanwhile, there exists uncertainties in the forward loop from the digital signal processor output to the
klystron. In this forward loop, RF components such as the I/Q modulator, low power amplifier, bandpass
filter, medium power amplifier, directional coupler, and switch are placed and these components inevitably
generate amplitude distortions and phase distortions.

In this section, amplitude distortions and phase distortions of RF components are modeled. In that model,
the amplitude distortions and the phase distortions are modeled as the lumped amplitude distortion and the
lumped phase distortion.

IV-A. RF COMPONENTS UNCERTAINTY IN FEEDBACK LOOP , FORWARD LOOP

The uncertainty in the RF components in the feedback loop is modeled as the multiplicative uncertainty.
Figure 4.1 shows the block diagram. In this section, the weighting function matrix W,,(s) and the

perturbation A, will be obtained.

WFB(s) ¢ A [€

—1
Q ~

out I in
+
out + O From Cavity
|: qu:|
out

Figure 4.1 Multiplicative Uncertainty Representation of Feedback Loop Distortion

To DSP

D
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The amplitude 4, and the phase 6 , are expressed as

out

Ay =1+ A 1) 4, 4.1)
H(mz‘ = Hin + A:9173 (42)

where A ,;, is the lumped amplitude distortion in percent and A, is the lumped phase distortion in
radian. In In-Phase (I) and Quadrature (Q) coordinates, the distorted /,, and O, , are expressed as

I = AOV’ Cos(eoul )
=(1+A )4, cos(0,, +Ayp)

=(1+A )4, (COS(ﬁm ) COS(A g ) —sin(@,,, ) sin(A 4 ))

out

Qout = Aout Sin(eout )
=(1+A )4, 800, +Ayy)
=(+A )4, (Sin(em ) COS(A gy ) + €05 8, ) Sin(A . ))

In a compact matrix form, 7, and Q,, are expressed as

{ I, } C(+A )4, |:COS(A an)  —SIN(A gp )}[cos(ﬁm )}

SIN(A yry)  €0S(A ) || SIn(G,,)

out

[coS(A g ) —sin(A ) | cos(d,,)
=(1+A AFB ) e " Ain |:

L sin(Agz)  cos(Ayep) i sin(6,,)

:(1+AAFB)

_C?S(AﬂFB) —Sin(A 4 )__[in :| ) (4.3)
| sin(Agy)  cos(Ayy) | O,

It is possible to represent (4.3) in the form of a multiplicative uncertainty as

Iout (S) Iin (S)
=\/+W A . 4.4
|:Qout (S):| ( +Wip ($)A g (S){Qm (s):| (4.4)

By Tayor series expansion, the perturbed term in (4.3) is reduced to

1
1-— AZHFB -A OFB

cos(A —sin(A
A+ A )l s (A grs) (Agrs) ~(14A ) 2
Sin(Agrs)  cOS(Agp) A 1 1A2
6FB _E OFB
1o
I 0 0 -A = Ao 0
=(1+A ) + oyl 2
0 1] |[Ay O 0 _Ly
o s
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Define

L a2 0
— A —-A 0 -A T "o
AFB(AAFBsAeFB):|: A HFB:|+AAFB|: 9FB:|+ 2 1
A gep Ay A g 0 0 A2
0FB
2
1
_E AZGFB 0
+A s . 4.5)
0 ——A
5 o
Then, (4.3) is reduced to
Iout x Iin
:<[+AFB(AAF89AHFB) 0 : (4.6)

In order to represent the perturbed system (4.6) in the standard form of uncertainty as given in (4.4),
App (A 4p5 5 Agep) 18 described as

KFB (AAFB’AEFB) = WFB (S)AFB (AAFB’AHFB) (47)
where

”AFB (AAFB’AHFB)"DC <1, Vo (4.8)

and the weighting function matrix W,,(s) is determined so that it reflects all frequency components that

are in Ay (A s Agry) -

A way to obtain (4.7) is as follow.

1. For min(A ;z3) <Az Smax(A ), min(Ag,) < Age <max(Agy), obtain the
AFB (AAFB ’ AHFB) .

2. Obtain

Ly = maX|AFB (A 4> Agrp )| .

3. Wy (s) is determined such that

Wi (8) 0 :|

0 Wi () (49)

Wi (s) :[

Wep(jo)2l,, YVo.
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I
Then, the standard multiplicative uncertainty form for { - } is obtained.

out

(4.10)

|: 1 out (S )
Qout (S)

:| = (I+ Wig ($)A g (A g s AgFB))iilm (S)}

Qin (S )

In a similar way, the standard multiplicative uncertainty form for the uncertainties in the forward loop can
be obtained. Define

1 A2 0
A A —Ay 0 -A, 5 Bror
AFOR (AAFOR’AHFOR) :|:AAF0R A FOR:|+AAFOR|:A OF()R:|+ 2 |
" o ot 0 5 AZGFOR
2
1
_EAZHFOR 0
+ Aaror 1 (4.11)
0 _EAHFOR

where A ., is the lumped amplitude distortion in percent and A, is the lumped phase distortion in
radians. Then,

Iaut (S) Iin (S)
=\ +Wiop (5)A por (A yror > Agror . 4.12
{QM <s>} 14 ron (I ron (rons )){Qm <s>} 12
where
”AFOR (AAFOR’AHFOR)"w <1, Vo (4.13)

and the weighting function matrix W, (s) is the solution of the following procedure.

1. Formin(A ,;oz) £ A ror Smax(A 4por) > and min(A gop) < Agror < max(Ageor) »

obtain the ZFOR (A 4ror» D gror) -

2. Obtain

Lrog = max|AFOR (A 4ror > A ror )| .

3. W (s) is determined such that

Wior (5) 0 :|

0 Wog (8) @14)

Wior () = [

Weor (J@) 2 lpor, V.

Figure 4.2 shows the standard multiplicative uncertainty form for the forward loop distortion.
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P Apo > WFOR(S)

H 4 [
Qin out

From DSP + > To Klystron

Aout
eout

~N

©

Figure 4.2 Multiplicative Uncertainty Representation of Forward Loop Distortion

IV-B. TIME DELAY MODEL

Now, consider a system that has a time delay 7, (i.e., e '). For a nominal system G, (s), time delay can
be integrated into the nominal system as the form

G,(s)=G,(s)e ™ . (4.15)

Hence, time delay can be modeled as an input multiplicative uncertainty.

Iout (S) _ Iin(s)
ozo) o) i

Figure 4.3 shows the standard multiplicative uncertainty form for the lumped time delay.

Consider the maximum delay, 7, , for which the relative error with respect to the delay-free system is

|1 - eXp(—jCDTd max ) .

due to the maximum time delay crosses 1.0 in magnitude at about frequency 1/7, ., , reaches 2.0 at

is shown in figure 4.4. The relative uncertainty

The amplitude |l —exp(—jOT )

frequency z/7,,,, where exp(—jor,,...)=-1.0, and oscillates at higher frequencies with maximum
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value 2.0. It follows that if all time delay 7,, 0<7, <7, , is considered, then the relative error bound
is 2.0 at frequencies above 7 /7, . Hence,

s O<ST!T

|1 - exp(—ja)rd max )

. (4.17)
2.0, D27/ Ty

lrd (]CD) = {

7,8

The weight function W, (s) for the time delay e "’ is determined satisfying

W, (jo)|21,(jeo), Vo.

7.5

Widely used weighting function W, (s) for the time delay e ™ is

(4.18)

W (s)= {wﬂ (s) 0 }

0 w, (8)

Tdmax S
W ()= wd

In the current model of the RF system for SNS, the time delays in the loop are

T gysiron —1.5€-7 sec : time delay inside the klystron,

Tye =1.21e-7sec  : time delay in the waveguide transmission (100 ft),

Te=1.21e-7 sec : time delay in the field signal feedback cable (100 ft),

Ty =1.0e-6 sec  : time delay for the signal processing in the DSP and
interface.

Hence, the total time delay 7 is
Ty = Tiyron + Twg T Tppe +Tpsp =1.392 psec

and the weighting function W, (s) is

1.392¢— 0065
W (s) = .
) = 13926006

The frequency response of W, (s) is shown in figure 4.4. Note that the more time delay is allowable.

However, in that situation, the closed loop system bandwidth should be reduced, which results in the
sacrifice of tracking performance, disturbance rejection of the closed loop system.
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Go () M o ——»

Ay Wrd (S )

Go(s) [— >

Aout
eaut

Figure 4.3 Input multiplicative uncertainty representation for the time delay in the loop
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Weighting function Wrd for the lumped time delay Ty

101:7777777777777777777777777777§ 77777777777777
W )l *l"""""""; *************** s
100 d NN,

oLl
-

1L

L

L
-+

I+

= A

L LiJuy

AN NN
B o=+

|
(R

-+

0% . i
10° ‘ | ‘ :4 | : |
10° 10° 10 10 10

Frequency (rad/sec)

T

Figure 4.4 Frequency responses of the relative uncertaintyl —e "¢ % for the time

delay 7, and weighting function W_, (s)
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V. LINEAR FRACTIONAL TRANSFORMATION (LFT) REPRESENTATION
OF A PERTURBED MODEL OF LINEAR ACCELERATOR RF SYSTEM

In section II, the klystron normalization and the klystron state space model is addressed. Also, the effect of
HVPS ripple on the klystron output is modeled as a output multiplicative uncertainty and as a exogenous
disturbance. The nominal klystron model is given by (2.36) and (2.37) . The perturbed klystron model due
to HVPS ripple is given by (2.67) and (2.68). Representation of the perturbed klystron model has two
options; the first one is multiplicative uncertainty representation of the HVPS ripple effect, which is given
by the transfer matrix (2.69) and (2.70) and shown in figure 2.25. The second is the exogenous
representation of the HVPS ripple, which is given by the transfer matrices (2.71) and (2.72), and shown in
figure 2.26. The exogenous disturbance representation of the HVPS ripple is an alternative and can
indicate the effect of the HVPS ripple on the klystron output directly. Hence, the latter model is taken for
the analysis and synthesis investigated in the following sections.

In section III, the SRF cavity and the normal conducting cavity have been modeled. Also, the perturbation
on the cavity parameters such as Q has been investigated and the perturbed cavity is modeled. The SRF
cavity model is givn by (3.7) and (3.8) and the normal conducting cavity model is given by (3.69) and
(3.70). The transfer matrix representation of the SRF cavity is given by (3.12) and the transfer matrix
representation of the normal conducting cavity is given by (3.71). From the perspective of SRF cavity or
normal conducting cavity, the beam current is an exogenous disturbance. This relation is shown in block
diagram figure 3.1. In the SRF cavity, the system matrix contains the Lorentz Force Detuning term,
whereas in the normal conducting cavity model, it is not there. For a SRF cavity, when there are parameter
perturbations as well as the Lorentz Force Detuning and microphonics, then the cavity model is replaced
with the lower LFT (3.61), or the upper LFT (3.66) and the corresponding block diagram figure 3.4 or
figure 3.5, respectively.

In section IV, the uncertainties in the RF components and signal processing interface have been modeled.
The uncertainties in the feedback loop and in the forward loop have been modeled as multiplicative
uncertainties. Equation (4.10) is the model of the feedback loop multiplicative uncertainty and (4.12) is the
model of the forward multiplicative uncertainty. Figure 4.1 and figure 4.2 are their block diagrams. Also,
the times delays in the loops has been lumped and modeled as a multiplicative uncertainty. Equation (4.16)
is the model for the time delay and figure 4.3 is the block diagram of the multiplicative uncertainty.

In this section, all the models are integrated and a perturbed linear accelerator RF system model is derived.
The importance of scaling to be considered when subsystems are integrated is studied everywhere. When
klystron, cavity, disturbances, and other uncertainties are merged into one perturbed system, the klystron
input is treated as the reference for scaling. Namely, the klystron input represented by u , is scaled in such
a way that

e, <1.0 (5.1)

and all weighting function matrices are determined so that the inputs to these weighting function matrices
are scaled and their norms are less than or equal to 1.0. The scaling of the klystron input yields a gain
matrix, which may be lumped into the klystron gain.

Figure 5.1 shows the perturbed linear accelerator RF system model. The system has three exogenous
c?R JB <1.0, is the scaled
2

siganls. d,,

<1.0, is the disturbance representing HVPS ripple, d B>
2

disturbance representing beam current. The weighting function matrix W,
blocks shown in figure 2.26. That is,

ople is the lumped one of two
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W Rippte () = G gippie (5) - (5.2)

Also, the weighting function matrix W,,, for d 5 18 the lumped transfer matrix of G, (s) shown in figure
LN
1|
and @p;,,, isthe beam angle. That is,

3.1 and diag( )Ywhere I, =1cos(@gpins)> I; =1sin(@ye,,),and I is the average beam current

>

1,

ﬁ 0
Waewi () = Gy (s) | (5:3)
Il
The reference signal r is such that
], <1.0. (5:4)

When the reference r is required to be ||r||2 >1.0, then a weighting function matrix W, (s)is inserted so

that the scaled reference 7 to the error calculation block satisfies ||7||2 <1.0.

In figure 5.1, there is a weighting function matrix W, (s) . This weighting function matrix specifies the

closed loop system performance. The typical specifications of the closed loop system include:

1. Minimum bandwidth frequency w, (defined as the frequency where the maximum singular

o . 1
value of the sensitivity matrix S crosses T from below).
2
Maximum tracking error at selected frequencies.
System type, or alternatively, the maximum steady-state tracking error, A4 .
Shape of S over the selected frequency range.

Maximum peak magnitude of S , ||S( ja))"w <M.

RN

Mathematically, these specifications may be captured by a weighting function matrix W, (s) which is

specified by the designer. The performance requirement becomes

||Wpe,fs||w <1. (5.5)

Usual selection for the performance weighting function W, (s) is

w - (8) 0
w = 5.6
perf (S) |: 0 W our (S):| ( )
SIM+o,
Wi (8) = s+ Aw,

In the linear accelerator RF system of SNS, the performance specification for the closed loop system is
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The maximum steady-state tracking errors : 0.5% in amplitude
0.5 degree in phase.

Shape of S over selected frequency w, .

Maximum peak magnitude of S, ||S( ja))”w <2.

When the closed loop system bandwidth @, is to be @, the performance weighting function w ey (8) 18

512+,
s+0.005-@)
Note that as mentioned in the previous section, the maximum of the closed loop system bandwidth @, is

W pers (s)= 5.7

restricted by the time delays in the system.

From figure 5.1, a generalized closed loop system in the context of the H_ control theory is obtained. The

generalized closed loop system is represented by the Linear Fractional Transformation (LFT). The blocks
whose boundaries are dashed-line in figure 5.2 are the uncertainty blocks. They have the inputs z,. which

are the outputs from the system and outputs w, ~which are the inputs to the weighting function matrices.
There are other inputs such as exogenous disturbances d R> d 5 and the set point trajectory » and the
control input u,.. There are other outputs such as the performance weighting function matrix output ¢*,

plant output (cavity field) y , tracking error e* . In figure 5.2, the outputs are the outward signals from the

blue dashed block and the inputs are the inward signals to the blue dashed block. Grouping the inputs in
the order of inputs to the weighting function matrix blocks, exogenous disturbances, set point trajectory,
and control input, results in

|_WFOR Wy Wg @ odp dy o1 o uCJ. (5.8)

Grouping the outputs in the order of the inputs to uncertainty blocks, plant output (cavity field) y, as the

performance weighting function matrix output ¢*, tracking error e* | results in

[ZFOR Z, Zp 1y €f ek]. (5.9)

Then, the open loop generalized system is given by
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r A Wror Wror
Z FoR
Wm' Wzd
Zal G G G,
Wep 11 12 13 || Wrs
ZFp
’ =Gpl dy |=|Gy Gy 1 Gy | dg (5.10)
~k dB db’
r | G5 Gy Gy r
k
e
L Uc | L Yc |

where G, i, j=1,2,3, are transfer matrices with appropriate dimensions.

Figure 5.3 shows the open loop generalized system.

Also, a controller C is connected between tracking error e* and control input u ., and then, the closed loop
generalized system is obtained as shown in figure 5.4.

r 7 Wror W ror
Z For
Wa Wa
Zul G e L Gy ]
Wep cpli cpi2 - cer13 || Wrs
g - ; 5.11
=G| =] e (5.11)
dy Gepn 0 Geapm 0 Gepn | dy
y ~ ~
~k B B
e
L i - p

where Gpp;, i=12, j=123, are transfer matrices with appropriate dimensions. In figure 5.4, the

uncertainty blocks are connected properly so that they are reflecting the input-output relations on the
uncertainty blocks in the closed loop system configuration as shown in figure 5.1.

In order to investigate the open loop system characteristics against the specific signals whatever they are
(uncertainties, disturbance, set point trajectory), in figure 5.3, the specific signal is set nonzero and other

signals are set zero and then, the outputs are taken into consideration.

The nominal performance problem is investigated in the configuration shown in figure 5.4 where the
uncertainty blocks are zero and the exogenous disturbances are zero.

The robust stability problem is investigated in the configuration shown in figure 5.4 where the exogenous
disturbances are zero and the robust stability is checked for the uncertainty block

Ay - (5.12)
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The robust performance problem is investigated in the configuration shown in figure 5.5 where the
uncertainty blocks are nonzero. For the exogenous disturbances and set point trajectory, a fictitious
uncertainty block A, is introduced and robust stability is checked for the uncertainty block

(5.13)

V-A. PERTURBED MODEL OF A SRF CAVITY

The perturbed model of a SRF cavity due to RF parameter variations is investigated in section I[V-B. In the
perturbed model of the SRF cavity, the Lorentz Force Detuning Aw, is treated as the perturbation of the

system matrices. The microphonics are treated in the same way as the Lorentz Force Detuning. Also, the
cavity RF parameter perturbations are treated as the system matrix perturbation. Figure 5.6 represents the
generalized closed loop system with perturbed SRF cavity. Inthe intermediate configuration shown in
figure 5.7, inputs and outputs of the generalized system are extracted. The inputs are

|_w D Wrop Wu Wgp L dp dy o1 uCJ (5.14)

and the outputs are
[v Y Zpop Zu Zp Ly €8 ek]. (5.15)

Figure 5.8 shows the generalized system whose inputs and outputs are given by (5.14) and (5.15).
Now, from the configuration given in figure 5.7, the uncertainty block can be extracted.

(5.16)

AFOR

and so the robust stability problem is investigated in the configuration shown in figure 5.9 where the
uncertainty blocks are nonzero and the exogenous disturbances are zero and the robust stability is checked
for the uncertainty block (5.16).

The robust performance problem is investigated in the configuration shown in figure 5.10 where the
uncertainty blocks are nonzero and for the exogenous disturbances, set point trajectory, a fictitious
uncertainty block A, is introduced and robust stability is checked for the uncertainty block

Ap
ASRF
Ay : (5.17)
A‘rd

A por |
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APPENDIX. PROOF OF (3.8) AND (3.9)

The transformation is defined by (4.7).

We need to show

From (A.1),

z5

L]
y=CAw,)x, =C(Aw,) Vv .

Zy 1
B . CAw,)
|: :|: 2 :Px: Vl 2
Z5 Z51 X3
&)
Z52 Xy

4,=4,(Aw,)=C(Ao,)A(Aw, )C* (Ao,),
Bo :Bz = C(Aa)L)B(Aa)L) s

Bo[ =Bz] :C(Aa)L )B[ (Aa)L)’

zZ5

Z5

From (A.2) and (A.8), we obtain

-1 —
C(AwL)} A(ML){C(AV@L)} {; ﬂ
21 0

o
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(A.1)

(A2)

(A3)

(A4)

(A.5)

(A.6)

(A.7)

=] [Ca ClAw,)]” c(A c(A
{Z}{ (VwL)}A(Aa)L){ (VwL)} {Z}[ (Va)L)}B(Aa)L)uCJ{ (VwL)}B,(AwL)I

(A.8)

(A.9)



[C(Aw)) BlA. ) B,
V ( a)L)_ B >

o

_C(AWL) B, (Aw, )= B,
v ! L B |’

ol

1
ClAo, ){C(AV% )} -lc, o].

First,

—1 — —
{C(AwL)} A(ML){C(A@L)} {1_40 _O}Q{C(Aw»} A(A%):PU _()}{C(Awm}
Vv V A, A5 V A, A5 V

o o

- C(Aw )A(Aw,) | AC(Aw,)
VA(Aw,) | | 4,,C(Aw,) + VA,

Therefore,
4,=4.(Aw,)=C(Aw, ) A(A0, )C" (Aw,).
It is trivial to show
B,=B.=C(Aw,)B(Aw,),
B,=B,=CAw,)B,;(Aw,).

Also,

o

ClAw)|" =
cmm{ (V‘" )} -[c } ,

-1
0] C(AwL){C(AVa)L)} e O{C(A”L)}

o C(Aw,)=C,C(Aw,).
Hence,

C,=C.=C(Aw,)C*(Aw,)=1,.
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Figure 5.1 Perturbed Model of the Linear Accelerator RF system
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Figure 5.2 Perturbed Model of the Linear Accelerator RF system. Uncertainty Block, Open Loop Linear Fractional Transformation
Interconnection, and Controller are to be extracted
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Figure 5.3 Linear Fractional Transformation Representation
of Perturbed Open Loop System
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Figure 5.4 Linear Fractional Transformation Representation
of Perturbed Closed Loop System
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Figure 5.5 Linear Fractional Transformation Representation of Perturbed
Closed Loop System for Robust Performance
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Figure 5.6 Perturbed

Model of the linear accelerator RF system with the SRF Cavity
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Figure 5.7 Perturbed Model of the Linear Accelerator RF system. Uncertainty Block, Open Loop Linear Fractional Transformation

Interconnection, and Controller are to be extracted
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Figure 5.8 Linear Fractional Transformation Representation of
Perturbed Open Loop System for SRF Cavity
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Figure 5.9 Linear Fractional Transformation Representation of
Perturbed Closed Loop System for SRF Cavity
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Figure 5.10 Linear Fractional Transformation Representation of Perturbed Closed Loop
System for Robust Performance for SRF Cavity
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